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ABSTRACT

Some problems in the filtering end the detection of diffusion processes
that are solutions of stochastic differential equations are studied,

Transition densities for Markov process solutions of a large class
of stochastic differential equations are shown to exist and to satisfy
Kolmogorov's equations, These results extend previously known results
by ellowing the drift coefficient to be unbounded, With these results
for transition densities the nonlinear filtering problem is discussed
and the conditional probability of the state vector of the system conditioned
on all the past observations 1s shown to exist end a stochastic equation
is derived for the evolution in time of the conditional probability
density. A stochastic differential equetion is also obtained for the
conditional moments, These derivations use directly the continuous time
processes,

Necessary conditions that coincide with the previously known sufficient
conditions for the absolute continuity of measures corresponding to
solutions of stochastic differential equations are obtained., Applications
are made to the detection of one diffusion process in another. Previous
results on the relation between detection and filtering problems are

rigorously obtained and extended,
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I. INTRODUCTION AND PRELIMINARIES

In this thesis we shall study some filtering and some detection
problems described by stochastic processes, These problem descriptions
have wide applications in physical problems hecause many physical phe-
nomena can be modeled by stochastic processes,

For satellite orbit tracking and prediction problems, filtering has
been effectively used to obtain "good" estimates of the satellite orbits
from the nolsy data received from the satellites by the ground stations,
Missile and satellite guidance problems typically involve noisy meesure-
ments from the various sensors and filtering theory hes been useful in
improving guidance performance,

Many communication problems involve a signel corrupted by noise,
This signal corruption cen occur, for example, by the thermal noise in
transmitters and receivers or by the properties of the medium through
which the signal is transmitted, To obtain & "good" estimate of the
signal, the received date must be filtered, A particular type of communi-
cation problem is feedback communicetion, for example, the communication
from a ground station to a satellite and back to the ground station
embodies the feedback principle, Flltering can be shown to provide a
scheme to use this feedback comminication channel in an optimal manner,

Chemical processes can often be modeled by stochastic processes where
nolsy measurements of -the operations are obtained and filtering theory
can be used to obtain 'good" estimates of the operations, Some interest
has developed for applying filtering techniques to models of economic
systems which include random behavior, Identification problems where

some of the system parameters are random can be solved by applying
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filtering theory to obtain "good" estinates of these random parameters.,

In many stochastic optimal control problems the state vector of the
system is described by a stochastic process and the observations made on
the system are described by & stochastic process which is & function of
the state stochastic prccess and noise, The control problem is to control
the state of the system optimally (given a performance criterion) using
the observations, These stochastié optimal control problems form a
large class of physically important problems., The conditional probability
of the state given all the past observations, which is obtained for the
filtering prohiem, is the fundemental tool for determining the optimal
control to be used because the conditional probability represents our
probabilistic knowledge of the state of the system, The filtering
solution with the conditional probability represents a major step to
solving the st?chastic optimal control problem,

Determining whether received data contaln a signel and nolse or merely
noise has many applications particularly in radar problems where a signal
is sent and then the received data are checked to determine whether the
data contain a reflected signel and noise or only noise, To make the
decision in an optimal manner between the two hypotheses that the data
contain signal and noise or that the data contain noise we apply some
results from statistical decision theory and calculate & likelihood
function, This likelihood function determined from the data is then
compared with a threshold to indicate the hypothesis to choose, For
applications it is useful to be able to calculate this likelihood function
recursively, i.e,, to obtain a differential equation for the evolution

in time of the likelihood function, This recursive form for the likeli-
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hood function can often be obtained by epplying some results from
S filtering theory,
Before analyzing the filtering and the detection problems in depth

. we shall discuss some of the history of these problems indicating the

5 results that have been obtained, describe the results that we shall obtein
and describe some of the mathematical techniques and results that will
be used in analyzing the filtering end the detection problems,
A, DESCRIPTION AND HISTORY OF THE PROBLEMS

1, Nonlinear Filtering

The filtering problem of estimating one stochastic process given
observations of a related stochastic process has received attention in
both engineering and mathematics, Kalman and Bucy [Ref, 1] modeling the
stochastic processes by linear differential equations with white noise

oy °© inputs obtained a simple recursive solution to the linear filtering
problem, The obvious extension of their work to a filtering problem with
. nonlinear differential equations (i.e., the nonlinear filtering problem)
has been discussed by a number of authors, Stratonovich [Ref, 2], Kashyap
[Ref, 3], Kushner [Refs, 4,5,6], Bucy [Ref, T], and Mortensen [Ref, 8].
The originel studies on this toplc were somewhat naive and i* was some
time before it was realized that incorrect (or at least ambiguous) results
had been obtained by not paying proper attention to some of the mathe-
matical techniques involved, In particular, care had to be exercised in
interpreting and menipulating certein integrals--the so-called ItS and

Stratonovich stochastic integrals [Ref. 9],

Lo The aim of the papers on this problem has been to derive a differ-
e ential equation for the conditional probability density (or conditional
v 3 SEL-6T7-035
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moments) of the stochastic process to be estimated given all the past
observations of a related stochastic process, The most general results

for conditional moments that have been rigorously derived have been obtained
by Kushner [Ref, 6]. He had to make several assumptions on the stochastic
processes involved. Often these assumptions are dirficult to verify for
physicel models, The physical meaning of meny of the assumptions is

unclear end often the assumptions were made only to obtain some mathe-
matical results,

One reason for these many assumptions is that the problem is first
solved in the discrete time and then there is & passage to the limit to
obtain the continuous time result, Mortensen wis the first to use a
purely continuous time approach though he made some fairly restrictive
assumptions,

2, Absolute Continuity of Measures

For the continuous time proof of the existence of the conditional
probability density function we use certain results on the absolute
continuity of probability meaesures that correspond to solutions of
stochastic differential equations (stochastic differential equations will
be defined subseguently). Prohorov [Ref. 10] obtained the first results
for absolute continuity with the stochastic processes described by
stochastic differential equations though some nioneering work cii this
problem was done by Cameron and Martin [Ref, 11]. Following Prohorov,
Skorokhod [Refs, 12,13] and Girsenov [Ref. 14] obtained more general
results on sufficient conditions for absolute continuity,

3. Detection Theory

Some detection theory problems of a stochastic signel in white

SEL-6T-035 L
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noise have been solved where the likelihood function (Radon-Nikodym de-
rivative) can be recursively calculated., This recursive result was
obtained by Schweppe [Ref, 15] for the case where the signal is generated
by white noise into & finite dimensional linear system, His solution
makes use of the linear filtering results of Kalman and Bucy [Ref, 1],
Van Trees [Ref, 16] has considered & related problem obtaining the same
"type" of result as Schweppe., Sosulin and Stratonovich [Ref., 17] consider
the signal as a general diffusion process and indicate that the nonlinear
filtering results can be used to solve recursively for the likelihood
function,
B. NEW RESULTS

We will briefly describe some of the results obtained in this disser-
tation,

l, Nonlinear Filtering Theory

We present a rigorous derivation of a stochastic equation for the
evolution of the conditional probability density, The proof works directly
with the continuous time stochastic processes and no "discretizations"
are used, We also prove existence and differentiability properties for
transition densities corresponding to diffusion solutions of stochastic
differential equations, These properties are used in the derivation of
the equation for the conditional probability density, The main results
are Theorems 2,1 and k4,1,

2, Absgolute Continuity of Measures

We derive necessary and sufficient conditlons for the absolute
continuity of measures corresponding to the solutions of a lerge class

of stochastic differential equations, This result is given in Theorem 3.1.

p) SEL-6T-035
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3. Detection Theory

We consider the detection problem of determining whether a
stochastic signal (diffusion process) is present in white Gaussian noise

(Brownian motion) i.e., we have the two hypotheses to test
¢

1

dy, H(t)xt dt + dB, for 6

~

= dBt for o6

1]
(@]

where Xy is the signal and d%t is the noise, We rigorously derive a
differential equation for the likelihood function and relete this to the
nonlinear filtering problem, We compare this result to the results of
Schweppe [Ref, 15] and Sosulin and Stratonovich [Ref, 17] and relate the
differences to the different definitions of stochastic integral,

We consider the detection problem of & stochastic signel in correlated
noise and discuss conditions for nonsingular detection, We show how the
nonsingular problem can be related to a nonlinear filtering problem to
obtain a differentiel equation for the likelihood function,

C. SOME MATHEMATICAL TECHNIQUES AND RESULTS

1, General Theory and Notation

A number of mathematical definitions and results will be used in
this dissertation that may be somewhat unfemiliar to most engineers, We
will briefly review these toplcs here,

Stochastic processes which are solutions of stochastic differential
equations will be considered here, For general references on stochastic
processes and particularly to stochastic differential equations the reader

1s referred to Doob [Ref, 18] and K. Itd [Ref., 19]. Some familiarity with

SEL-6T7-035 6




the basic definitions of probability theory and stochastic processes
will be assumed., Generally a stochastic process could be denoted by the
four-tuple (Q,E,P,{Xt]teT) where
i) (e,5,P) is a probability space, i.e.,, & measurable space
with a probability measure on it, For our case we will
usually consider @ to be the space of continuous functions
on T = [0,1], § then is the Borel o-algebra for Q and
the probebility meesure P 1is & measure on the space of
continuous functions, The points in Q will be denoted by
W
i1) (xt)teT is a family of random variables on (Q,§) with
values in the state space (E,2), For our case the state
space (E,&) will usually be (&,B") where B" is the
Borel o-algebre on &~ (Buclidean n-space). The time set
T will be & compact interval, usually [0,1],
We define B(Xu’ u < t) as the Borel o-algebra generated by the

process {Xu, u<t), A family of (sub) o-algebras §, is sald to be

increasing if for s <t Esc: gt' The process {Xt} 1s said to be adapted ;

to %t if Xt is 3t measurable, For example, X

l.es, 1f N= (A : P(A) = O} then §,ON for ¥V t, Without this
essumption when we obtuin almost sure (a,s.,) equality we are not certair

£ is adapted to
B(Xu, u<t), We will assume that all the (sub) o-algebras are augmented,
that all versions have the desired measurebility properties on the sub !

'I

o-&8lgebra,

By a Markcv process we mean fundamentally a stochastic process that

has the so-called Markov property (cf, Loeve [Ref. 20]) i,e,,

i SEL-67-035




B =
P(AfutureI present+past) P(Afuturel Bpresent) gpice

It will be useful to define more precisely the motion of a Markov
process (cf, Dynkin [Refs, 21,22]), Take & measurable space (E,&). The
function P(s,x;t,I') (0 < s<t, xe E,T € &) 1is said to be a trensition
measure if the following conditions are satisfied:

a. P(s,x;t,I') is a measure (as & function of the set T)

b. P(s,x;t,I') is an €& measurable function of x

ce P(s,x;t,I') <1

d. P(s,x;8,E\x) = O

e. P(s,x;u,T) =/ P(s,x;t,dy)-P(t,y;u,I‘) 0<s<t<u
E
We shall also need the notion of a transition density, Let pu be a

is called a transition density if the following conditions are satisfied:

a. p(s,x;t,y) > 0 (t > 8;%,y € E)

of (x,y)
T fP(B,x;t,Y)u(dY) <1 (t> s,x ¢ E)
E

5. p(s,x;t,y) =‘/EKs,x;u,z)p(u,z;t,y)p(dz) (s <u<t,x,y ¢ E)
E

Under certain conditions on the Markov process it is possible to show
that the transition density function exists and satisfies the following

two linear second-order parabolic equations,

SEL-6T-035 8
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op(s,y;t,x ) 1 3%
= P ;ai(s)y) 55.: + Ezcij(s,y) gyi—ggjj' (l'l)
i,

a(a (t x)p) az(c (t x)p)
op(s,y;t,x l
t = T z ax ax (1.2)
i
where
lim % f (y - x)P(s,%x;8 + t,dy) = a(s,x)
t40 |y_x| <3
lim %— f (y - x)Xy - x)TP(s,x;s + t,dy) = c(s,x)
t4 0
Iy-xl <3

3> 0

These equations are usually celled Kolmogorov's backward and forward
equation respectively, The reader is referred to Feller [Ref, 23] and
Bharcuha-Reid [Ref, 24] for a more complete discussion of these equations,

Consider a process [Xt). If [Xt} is a Markov process then for

t>t and A € B(Xt)

PAIX, u<t) = B(AIX ) a.s.
If we can replace 1 by a (random) stopping time T(w) such that
{w: T<s) €B(Xu, u < s)

and if T <t and

9 SEL-6T7-035




P(A|Xu, wu<T) = P(AIXT) 8.8,

then {Xt] is called & strong Markov process,

By a diffusion process we mean a strong Markov process with continuous
seample paths,

By Brownian motion (also called the Wiener process) we meen & process
{B(t,w),P} which has continuous sample paths whose increments are inde-
pendent and normally distributed, If [Bt] is defined for t e [0,1]
we assume B(O,w) = O and E(BE) =t. By n-dimensional Brownian motion
ve mean & system of n one-dimensional Brownien motions independent of
each other,

We now consider integrals with respect to the Brownian motion integrator,

i,e., integrals of the form

ff(t) aB(t,w)

Since Brownian motion has unbounded varletion we cannot interpret this
integral (for almost all ) as & Lebesgue-Stieltjes integral, Wiener
[Ref, 25] defined this integral using the integration theory developed
by Deniell, This integral cen be defined for all functions, f, that
are square integrable (cf., Doob [Ref, 18] for & good discussion),

K. It0 [Refs. 19,26] considered the problem where f was & random
function independent orf the future Brownian motion, He first defined the

integral for step functions as

Zf(ti,w)(BtHl - Bti>

SEL-6T-035 10




n
3 k> 0 such that for Vx e Q

A > kx'x = k|x|2 (1.6)
The proof of & theorem, lemma, etc., begins with the word "proof" and
terminates with the symbol 0 which can be read as "this completes the
proof,"

2, Theory of Stochastic Differential Equations

We will have occasion throughout this dissertation to consider

vector stochastic differential equations such as
ax(t,w) = a(t,x(t,w)) at + b(t:x(t:w)) dB(t:w) (L.7)

where x(t,m), a(t,x(t,0)) and B(t,w) will be n x 1 column vectors
and b will be an n x n matrix, The process {Bt] is n-dimensional
Brownian motion, The vector a 1s usually referred to as the drift or
transfer vector and the matrix b 1is called the diffusion matrix,

We shall briefly review some results from the theory of stochastic
differential equations that will be used in later chapters,

8, Existence and Uniqueness of Solutions of Stochastic
Differential Equations

The usual results for existence and uniqueness for solutions
of stochastic differential equations are due to K, It0 [Refs. 19,26] and

I. I, Gikhman [Ref. 27].

Theorem 1,1, Consider a vector stochastic differential equation
dx(t,w) = a(t,x(t,w)) dt + b(t,x(t,w)) aB(t,w) (L.7)

SEL-67-035 12



and showed that this definition could be extended to all functions f

satisfying

ff]f(t,a))lz dt dP < o

QarT

If the integrand is measurable with respect to the past Brownian motion
then by Itg's definition of stochastic integrals this integral with respect

to Brownian motion is a martingale of Brownian motion, i,e,, for 1 <t

t T
E[fof(s,m) stlB(Bu, u < 'r)] = 41‘(3,&) dB, &.s. (1.3)

This martingale property will be important in meany of our calculations,
Some other notational descriptions will be useful, By o(Ll,Lw) we
mean the weak topology induced on Ll by Lw. A description of weak
topology cen be found in Royden [Ref, 27] or Kelley [Ref, 28],
Given a matrix a(t,x) = {aij(t,x)] we say that a(t,x) satisfies

&8 global Lipschitz condition if each component a satisfles this

1)
property, i.e., Vx,y

l,Z,OOQ,n (l.)'l')

Iaid(t)x) - a'iJ(tJy)I s le = yl i)J

Similarly by a(t,x) being bounded we mean 3 K< w such that for Vi,x

]aid(t,x)|5K Lo = 1,24 k50 (1.5)

Given a vector or a matrix A we denote the transpose of A &as AT.

By & symmetric matrix A being strictly positive definite we mean

11 SEL-67-035




vhere t e [s,1], x(s,0) = &(w), P{|a] <=} = 1 and the terms of
S the vector a(t,x) and the matrix b(t,x) satisfy a global
Lipschitz condition in x and are measureble in t, Then the
solution [xt] exlsts, 1s unique, and is a diffusion process,

. Furthermore if o € Lz then

Proof,

The idea of the proof is to use Picard iteration, as

X (t,m)

1
Q

t t
t,w) a +fa(u,xn(u,a>)) du + fb(u,xn(u,w)) dB(u,w) (1.8)
« " s s

1Y xn+l (

to show that & solution exists and that it is unique, The integral with
respect to Brownian motion is the stochastic integral defined by K, ItO,
For detalls of the proof and the stochastic integral the reader is referred
to K, It® [Refs. 19,26]s 10
b, Stochastic Differential Rule

Another result from stochastic differential equation theory
will be important in the following presentation, that is, the stochastic
differential rule, It is known that twice continuously differentiable
functions of diffusion processer, violate some of the usual rules for
5 transformations in ordinary celculus, The stochastic differential rule

. 1s described in the following theorem which is due to K, Ito [Ref., 30].

13 SEL-67-035




Theorem 1,2, Let x(t,w) satisfy

ax(t,w) = a(t,w) dt + b(t,w) dB(t,w)

(1.9)

where we assume the vector a(t,m) and the matrix b(t,n) are inde-

pendent of the future Brownian motion end G 1is an open subset of

the n-space @ which contains all the points (x(t,0)) u<t<v

weQ., Let f£(t,x) be a continuous function defined for u <t<Lv

X = (xl,xz,...,xn)T € G and suppose that

fo(t,x) _ afg*gt,xz
2
fi«j(t,X) = %:?f;i%;?z i,J = l,2,...,n

(1.10)

(1.11)

(1.12)

are all continuous, Then the differential of n(t,w) = £(t,x(t,w))

is

dﬂ(t,w) = <fo(t,x(t,a))) +2fi(t,x(t,u)))>ai(t,w)
i

1
+3 z fi‘j(t,x(t,w))cij(t;w) at
1,d

+ D £t x(6,0))by 4 (8,0) 4B,(t,0)
i,J

where c(t,w) = {cij(t,w)] = bT(t,w)b(t,a.)).
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Proof,
We briefly sketch the proof to give the reader an idea of the tech-

niques, By the Taylor expansion of f(t,xl,...,xn) we have

m

k§<q (t;l,w) - n(tz_l,w»
é[fo(r)(tﬁ- trlz-l)"igfi(f)(xi(ti) - xi(ti_l»

TI( s,a)) = T](t,(b)

Do) ) )

(1.14)
where 7t = (ti_l,xl(ti_l),...,xn(tz_l)), ti =t + (k/m)(s - t). Since
. fij(t,xl,...,xn) are continuous and xi(t,w) 1=1,2,..,n are all

m
. continuous in t a,s,, eijk

n-o a,8, Therefore the last term in the above expression goes to zero

tends to O uniformly in m and k as
in probability, It can be shown that
(x;(8,0) = %, (t,0))(x,(s,0) - x,(t,0))

8
= f[(xi('l',(b) = xi(t,w))aJ(T,w) + (xJ(T)w) = xj(t,ﬂ)))ai('l',(l))
t

+ ciJ(T,aD] dt

- 8
ot + f[(xi('r,w) - % (4,0))by (7,0) + (x,(1,0) - xJ(t,w))bik('r,w)] dB, (t,)
o 15 SEL-67-035
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‘- Using this result the remaining terms in the Taylor expansion are:

(suppressing the summation signs) -

= 8
f(fo(a) + fi(a)ai('r) + %‘ fiJ(a)ciJ(r)) dr + ffi(a)bid(r) dBJ(") ’
l A ]
+%{fm(a) (y(5) = %, (e))ey(e) + (xy(5) = %y (e))ay(x)] s

ol { £H9(0)[(x,(0) - %, 0 (1))Ny (1) + (xy(r) = )0 (1)))y (4)] aB()

where km(x) denotes the maximum tﬁ vwhich does not exceed <t and

o= (xm(r),xl(lm(w)),...,xn(km(w))). Since xi(lm(r)) - xi(T) 8.8,
the last two integrals 1n the above expression go to zero in the limit

and we have the result, |

b

To illustrate the application of the stochestic differential rule c

we provide two examples (which will also be used subsequently),

Example 1,
Consider the function M% given by
t

M, = exp faT(u,x(u,a)))c-l(u,x(u,w)) ax(u,w)
8

t
2 [ e¥(w,x(w,0))e ™ u,x(u,0))a(u,x(v,0)) du (1.26)
8

b(u,x(u,w)) dB(u,w), ¢ = bTb, and bl exists,

vhere dx(u,w)

The function Mt can therefore be rewritten as ’
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M

Let

Then

e -1

- ew | e (u,x(u,0)0" (u,x(u,0)) aB(1,0)

- % [aT(u,x(u,a)) )c-l(u,X(u,w) Ja(u, x(u,0)) du

dz

8

t

8

-1
T T
a (t,xt)b (t,xt) dB,

1 T -1
-3 e (t,xt)c (t,xt)a.(t,xt) dt

(1.17)

(1,18)

(1.19)

We shall now apply the stochastic differentisl rule (Theorem 1,2) to the

z
function e

Substituting these terms in Eq, (1.13) we have the following

equation for

My

M,

t -
T 7 \
Y +f M aT(u,x )b (u,x ) B

+

t. We first compute the derivatives of ex

1

u
5

ol

t

T -1
fMua. (u,xu)c (u,xu)a.(u,xu) du
8

1

ol

17

f MuaT(u,xu)bT- (u,%, )b (u,x Ja(u,x ) @ (L.20)
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Recalling that c = bTb we have

t

=l
T 7
M 1 +fMua (u,x, 6" "(u,x,) aB, (1.21)
8

't =

or written as only & functional of x , s<u<t we have
t

T -1 .
Moo= 1+ /-Mﬁa (u,xh)c (u,xu) dx, (1.22)
s

Example 2,
Find the differential for q;l where

T 1 T
q EX €xp j.S (U,xh,yﬁ) dBu -3 j.g (u:xu;yﬁ)g(u)xu;yu) du

L+ B [v8lu,x,y,) a8, (1.23)
8
where g, = Ex(wt) and we agsume

a, = 1+ [Elvelu,x,v)) a8, (1.24)

The expression for the differential of q;l can be written down formally

as

d(q;]') = 12 dg, +3% 2 3 (dqt) (1.25)
9 %

since the differential rule can be characterized as
4 X4
af, = ff dx, + 3 f (dx ) (1.26)

and since the term (dqt)2 erises only from the stochastic integral via
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our differential rule we have

-

a(q;l) = - 3 Blva(tx,y,)) dBy + 5 By, a(t,x, ¥, ) Byt x,, ;) at
36 ot
. (L.27)

c. Sufficient Conditions for the Absolute Continuity
of Diffusion Processes

We now consider the following stochastic differential

equations,

1]

ax(t,w) a(t,x(t,w)) dt + b(t,x(t,w)) dB(t,w) (1.7)

dy(t,w) £(t,y(t,w)) dt + g(t,y(t,0)) dB(t,w) (1.28)

- Almost all sample functions of these two stochastic processes (xt} and

{yt) are continuous functions, Therefore we can describe the stochastic
. processes [xt] and [yt] by measures, say My and by on the
n-dimensional space of continuous functions Cn[s,l]. We shall give
sufficient conditions for Hy to be absnlutely continuous with respect
to (written by << gx).

In terms of stochastic differential equations the first results were

obtained by Prohorov [Ref, 10] though some important pioneering work in
Wiener measure (the measure induced by Brownian motion) was done by
Cameron and Martin [Ref., 11]. Subsequent to Prohorov, Skorokhod [Ref. 13]
and Girsanov [Ref, 1l4] considered the problem and ohtained more general

results, We state the result due to Girsanov in the .ollowing theorem,

i -
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Theorem 1,3, Suppose that

lx(t)a)) = a(t:x(t)w)) at + b(t)x(t;w)) dB(t:w) (107)
dY(t)w) = (a(t;y(t)w)) + b(t:y(t:w))h(t)Y(t,w))) dt + b(t)y(t}w)) dB(t:w)
(1.29)
where

i) te (s,1]

i) h(t,y(t,w)) = (hl(t:}'(t)w))th(t’y(t!w)))“')hn(t)y(t:w)) )T

1ii) a(e+,¢), b(e,*) and h(.,¢) are measurable in both variables
1l

1v) flb(t,x(t,w))lz dt <w a.e,
s

1
[]h(t,x(t,a)))lz dt <w a,e,

1
f|a(t,x(t,w))|2 dt <w a,e,
5
v) I(t,x(t,0))] < b (|x(t,0)])
where ho is & nondecreasing function of a real variable, Then
My <<y

where p &nd p, are the measures induced on Cn[s,l] by (x,)
and {yt} respectively,

The Radon-Nikodym derivative, qu/dux, will be given by
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5. Ay 1 1
Ex_ = exp th(u,xu) dB - %flh(u,xu)lz du (1.30) .
8 8

If b"l exists, this can be rewritten entirely in terms of {xt],

iy
Ay

1
T -1
- cpl(xu, s<u<l) = exp fh (u,xu)b (u,xu) dx,
]

1l 1
T -1 1 2
- fh (u,xu)b (u,xu)a(u,xu) du - §f|h(u,xu)| du
8 8

(1.31)

LA ]
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IT. TRANSITION PROBABILITY DENSITIES FOR DIFFUSION PROCESSES

Markov processes which are solutions of stochastic differential
equations generated by Brownian motion are often used to describe the
nonlinear filtering problem and the stochastic optimal control problem,

A fundamental tool for these problems is the conditional density, viz,,

the probability density for the process to be estimated conditioned on all
the past observations, The expression for the conditional probability
density is a function of the transition density for the Markov process
which is to be estimated, Therefore to derive an expression for the
conditional probabllity density rigorously it is first necessary to prove
that this associated transition density exists, To derive & stochastic
equation for the conditional probability density it is necessary to prove
that the transition density is differentiable enough to satisfy Kolmogorov's
forward equation (the Fokker-Planck equation),

In this chapter we shall consider stochastic differential equations
which have diffusion process solutions, and (1) prove that the transition
density with respect to Lebesgue measure exists for the diffusion process,
(ii) prove that this transition density is suitably differentiable and
that the various derivatives can be bounded so that the density function
can be characterized as the fundamental solution of Kolmocgorov's equations,
A, EXISTENCE AND DIFFERENTTABILITY OF TRANSITION DENSITIES

We now consider the problem of showing that the solution of the

following vector stochastic differentiel equation

dx(t,w) = a(t)x(t)w)) dt + b(t,x(t,w0)) aB(t,n) (2.1)

SEL-67-035 2a



with suiteble assumptions on the coefficients has a transition density
B and thet this density satisfies Kolmogorov's forward and backward equetions,
In previous work on this problem, both a end b were assumed to be
bounded and Holder (or Lipschitz) continuous. Under these assumptions,
. Mortensen [Ref, 8] established existence of the density, while Dynkin
[Ref, 21] proved that the density existed and that it satisfied Kolmogorov's
equations,
We make the following assumptions on the coefficients
1) The diffusion matrix b(t,x) is Holder continuous in
t, globally Lipschitz continuous in x and globally bounded,
Moreover, the symmetric matrix ¢ (c = bTEQ is strictly

positive definite, The terms

dey ,(t,%) bzcij(t,x)

. axi 2 axiaxJ

1, = 1,2,e00,n

are globally Lipschitz continuous in x, continuous in ¢
. and globally bounded,
i1) The transfer (drift) vector a(t,x) is continuous in t and

globally Lipschitz continuous in x. The terms

Bai(t,x)

— 5 SR
i

are globally Lipschitz continuous in x and continuous in
t.

We state our result in the following theorem,
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Theorem 2,1, Let x(t,w) satisfy
ax(t,w) = e(t,x(t,w)) at + b(t,x(t,w)) aB(t,w) (2.1)

where we make the assumptions on the coefficlents described above,
Then there exists & version of the transition density for (xt}, Py

which satisfies Kolmogorov's equations,

Before presenting the proof we shall briefly outline the steps, We
first show that Kolmogorov's backward equetion is naturally assoclated
with the stochastic differential equation describing (x,) (Lemma 2.1),

If this backward equation has a unique fundamental solution then we can
show that this fundamental solution is the transition probability density
for (x,) (Lemma 2,2), Furthermore, if we can show that the formal
adjoint of the backward equation has & unique fundamental solution and
that for large values of the space coordinestes the fundamental solution
decreases sufficlently rapidly, then we cen prove that the transition
density satisfies Kolmogorov's forward equation,

Since the coefficient a(t,xt) in the stochastic differential equation
can be unbounded the usual results for existence and uniqueness of funda-
mental solutions for linear second-order parabolic equations cannot be
used, We proceed by first showing existence of the transition density
relating it to & simpler process (Lemma 2,3) and then finally proving that
the transition density is suitably differentiable (Lemma 2,4),

1, Kolmogorov's Equations

Since we want to show that a transition density for a diffusion

process exists and satisfies Kolmogorov's eguations we have to use some
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techniques and results from the theory of partial differential equations,
In particular it will be useful to define a fundamental solution of

a partial differential equation,
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